Phosphatidylinositol 4,5-bisphosphate regulates two steps of homotypic vacuole fusion.
نویسندگان
چکیده
Yeast vacuoles undergo cycles of fragmentation and fusion as part of their transmission to the daughter cell and in response to changes of nutrients and the environment. Vacuole fusion can be reconstituted in a cell free system. We now show that the vacuoles synthesize phosphoinositides during in vitro fusion. Of these phosphoinositides, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) are important for fusion. Monoclonal antibodies to PI(4,5)P(2), neomycin (a phosphoinositide ligand), and phosphatidylinositol-specific phospholipase C interfere with the reaction. Readdition of PI(4, 5)P(2) restores fusion in each case. Phosphatidylinositol 3-phosphate and PI(3,5)P(2) synthesis are not required. PI(4,5)P(2) is necessary for priming, i.e., for the Sec18p (NSF)-driven release of Sec17p (alpha-SNAP), which activates the vacuoles for subsequent tethering and docking. Therefore, it represents the kinetically earliest requirement identified for vacuole fusion so far. Furthermore, PI(4,5)P(2) is required at a step that can only occur after docking but before the BAPTA sensitive step in the latest stage of the reaction. We hence propose that PI(4,5)P(2) controls two steps of vacuole fusion.
منابع مشابه
Genomic analysis of homotypic vacuole fusion.
Yeast vacuoles undergo fission and homotypic fusion, yielding one to three vacuoles per cell at steady state. Defects in vacuole fusion result in vacuole fragmentation. We have screened 4828 yeast strains, each with a deletion of a nonessential gene, for vacuole morphology defects. Fragmented vacuoles were found in strains deleted for genes encoding known fusion catalysts as well as 19 enzymes ...
متن کاملYeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion.
Vacuole homotypic fusion requires a group of regulatory lipids that includes diacylglycerol, a fusogenic lipid that is produced through multiple metabolic pathways including the dephosphorylation of phosphatidic acid (PA). Here we examined the relationship between membrane fusion and PA phosphatase activity. Pah1p is the single yeast homologue of the Lipin family of PA phosphatases. Deletion of...
متن کاملPhosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion
Phosphatidylinositol 4,5-bisphosphate (PI 4,5-P(2)) on the plasma membrane is essential for vesicle exocytosis but its role in membrane fusion has not been determined. Here, we quantify the concentration of PI 4,5-P(2) as approximately 6 mol% in the cytoplasmic leaflet of plasma membrane microdomains at sites of docked vesicles. At this concentration of PI 4,5-P(2) soluble NSF attachment protei...
متن کاملElimination of plasma membrane phosphatidylinositol (4,5)-bisphosphate is required for exocytosis from mast cells.
The inositol lipid phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2] is involved in a myriad of cellular processes, including the regulation of exocytosis and endocytosis. In this paper, we address the role of PtdIns(4,5)P2 in compound exocytosis from rat peritoneal mast cells. This process involves granule-plasma membrane fusion as well as homotypic granule membrane fusion and occurs wit...
متن کاملVesicle Docking Is a Key Target of Local PI(4,5)P2 Metabolism in the Secretory Pathway of INS-1 Cells
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) signaling is transient and spatially confined in live cells. How this pattern of signaling regulates transmitter release and hormone secretion has not been addressed. We devised an optogenetic approach to control PI(4,5)P2 levels in time and space in insulin-secreting cells. Combining this approach with total internal reflection fluorescence mic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2000